1 Fig. 9 shows the curve $y=\frac{x^{2}}{3 x-1}$.
P is a turning point, and the curve has a vertical asymptote $x=a$.

Fig. 9
(i) Write down the value of a.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x(3 x-2)}{(3 x-1)^{2}}$.
(iii) Find the exact coordinates of the turning point P.

Calculate the gradient of the curve when $x=0.6$ and $x=0.8$, and hence verify that P is a minimum point.
(iv) Using the substitution $u=3 x-1$, show that $\int \frac{x^{2}}{3 x-1} \mathrm{~d} x=\frac{1}{27} \int\left(u+2+\frac{1}{u}\right) \mathrm{d} u$.

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines $x=\frac{2}{3}$ and $x=1$.

2 Differentiate $\sqrt[3]{1+6 x^{2}}$.

3 Show that the curve $y=x^{2} \ln x$ has a stationary point when $x=\frac{1}{\sqrt{\mathrm{e}}}$.

4 The equation of a curve is $y=\frac{x^{2}}{2 x+1}$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x(x+1)}{(2 x+1)^{2}}$.
(ii) Find the coordinates of the stationary points of the curve. You need not determine their nature.

5 (i) Differentiate $\sqrt{1+2 x}$.
(ii) Show that the derivative of $\ln \left(1-\mathrm{e}^{-x}\right)$ is $\frac{1}{\mathrm{e}^{x}-1}$.

6 The function $\mathrm{f}(x)=\frac{\sin x}{2-\cos x}$ has domain $-\pi \leqslant x \leqslant \pi$.
Fig. 8 shows the graph of $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant \pi$.

Fig. 8
(i) Find $\mathrm{f}(-x)$ in terms of $\mathrm{f}(x)$. Hence sketch the graph of $y=\mathrm{f}(x)$ for the complete domain $-\pi \leqslant x \leqslant \pi$.
(ii) Show that $\mathrm{f}^{\prime}(x)=\frac{2 \cos x-1}{(2-\cos x)^{2}}$. Hence find the exact coordinates of the turning point P .

State the range of the function $\mathrm{f}(x)$, giving your answer exactly.
(iii) Using the substitution $u=2-\cos x$ or otherwise, find the exact value of $\int_{0}^{\pi} \frac{\sin x}{2 \cos x} \mathrm{~d} x$.
(iv) Sketch the graph of $y=\mathrm{f}(2 x)$.
(v) Using your answers to parts (iii) and (iv), write down the exact value of $\int_{0}^{\frac{1}{2} \pi} \frac{\sin 2 x}{2 \cos 2 x} \mathrm{~d} x$.

7 Fig. 3 shows the curve defined by the equation $y=\arcsin (x-1)$, for $0 \leqslant x \leqslant 2$.

Fig. 3
(i) Find x in terms of y, and show that $\frac{\mathrm{d} x}{\mathrm{~d} y}=\cos y$.
(ii) Hence find the exact gradient of the curve at the point where $x=1.5$.

8 A curve has equation $y=\frac{x}{2+3 \ln x}$. Find $\frac{\mathrm{d} y}{\mathrm{dx}}$. Hence find the exact coordinates of the stationary point of the curve.

